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Comparison of time-to-event analysis methods

Method Most useful for

Cox PH model Hazard ratio for relative risk (with conf. interval)
for active treatment vs placebo (PFS, OS)

Parametric Cox Simulation of treatment effect,
PH model exposure-response (PFS, OS)

Fine-Gray PH model Hazard ratio for absolute risk with dropout
as competing risk (with conf. interval)

for active treatment vs placebo (PFS, OS)

Semi-Markov Effects of active treatment vs placebo
multi-state model on transition risks and sojourn times
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Comparison of time-to-event analysis methods (cont’d)

Method Shortcomings

Cox PH model Competing risks treated as right-censored

Parametric model Competing risks treated as right-censored

Fine-Gray PH model Competing risks weighted but unnatural risk set

Semi-Markov More complex models and larger data
multi-state model sets required for reliable inference
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What events (states) are of interest in a phase 3 clinical
study in oncology?

State Type of state

Randomisation to treatment arm (start) Initial state

Progressive disease (PD) Transient state

Treatment discontinuation due Transient

to adverse effects (DISC)

Lost to follow-up (LOST) Absorbing

Death Absorbing

Administrative data cut-off Not treated as
own state
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Cox PH model and parametric time-to-event model

Treated as right-censored:

Administrative data cut-off

DISC

LOST

Death

PD
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Fine-Gray PH model

Treated as right-censored:

Administrative data cut-off
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Semi-Markov multi-state model

Treated as right-censored:

Administrative data cut-off
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Simple multi-state model

Figure: Diagrammatic representation of a simple multi-state model for an
oncology drug trial
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Comparing two possible approaches

Two possible approaches as per [Asanjarani et al., 2021]:

Approach I Approach II

transition probabilities, intensity transition functions
sojourn time hazard functions (ITFs)

probabilities - direction ITFs - both direction and rate
hazard functions - rate

Incorporate covariates - yes Incorporate covariates - yes

Able to specify parametric form Able to specify parametric form

Able to simulate data Able to simulate data

Larger computational expense Moderate computational expense

Parametric and non-parametric Parametric and non-parametric
estimates of quantities e.g. CIF estimates of quantities e.g. CIF

95% confidence intervals 95% confidence intervals
of parametric estimates of parametric estimates
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Sojourn time hazard function and intensity transition
function
As per [Asanjarani et al., 2021],

Sojourn time hazard function

αij(t) = lim
∆t→0

1

∆t
P(t < τn ≤ t + ∆t|Jn−1 = i , Jn = j , τn > t) (1)

Intensity transition function (ITF)

α̃ij(t) = lim
∆t→0

1

∆t
P(t < τn ≤ t + ∆t, Jn = j |Jn−1 = i , τn > t) (2)

For a simple model with dichotomous covariate Z ∈ {0, 1},

αij(t|Z ) = αij ,0(t) exp
(
βijZ

)
(3)

α̃ij(t|Z ) = α̃ij ,0(t) exp
(
β̃ijZ

)
(4)
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Transition of events among patients in simulated data

Weibull-like ITFs on each transition i → j :

α̃ij(t|Z ) =
aij
bij

(
t

bij

)aij−1

exp(βijZ )

aij and bij are respectively similar to the shape and scale parameter
associated with typical Weibull distributions (although ITFs are not
associated with proper probability distributions!). βij is the covariate
coefficient. Chosen values of parameters:

a12 a13 a14 a23 a24

1.40 1.50 1.30 2.10 1.90

b12 b13 b14 b23 b24

2.68 2.13 2.30 1.10 5.00

β12 β13 β14 β23 β24

-0.90 -0.70 0.90 -0.10 -0.05
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Simulation method

Let τn denote the sojourn time in previous state Jn−1.
Adapting algorithm in [Beyersmann et al., 2009]), for each patient:

1 Simulate an event time from the survival function of the holding time
distribution at current state,
Si (t) = P(τn > t|Jn−1 = i) = exp

(
−
∫ t

0

∑
k 6=i α̃ik(u)du

)
2 Carry out a multinomial experiment to decide the event based on

P(Jn = j |t < τn ≤ t + ∆t, Jn−1 = i , τn > t) ≈ α̃ij (t)∑
k 6=i

α̃ik (t)

3 Repeat until an absorbing state is reached

If censoring is desired, simulate a right-censoring time at step 1 and
continue the algorithm until either (i) the sum of sojourn times in different
states exceeds the censoring time, or (ii) an absorbing state is reached.
If the censoring time is exceeded as per (i), record the last sojourn time in
a transient state as a right-censoring time.
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Details of simulated study

1→ 2: 159 patients

1→ 3: 220 patients

1→ 4: 500 patients

121 patients right-censored in state 1

2→ 3: 84 patients

2→ 4: 5 patients

70 patients right-censored in state 2
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Visualising the transition Diagnosis (1) to Relapse (2)
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Visualising the transition Diagnosis (1) to Death (3)

Joachim Grevel PAGE 2021 Tutorial, September 2021 15 / 41



Visualising the transition Diagnosis (1) to Dropout (4)
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Visualising the transition Relapse (2) to Death (3)
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Visualising the transition Relapse (2) to Dropout (4)
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Chosen baseline model

Weibull-type intensity transition function:

α̃ij(t) =
aij
bij

(
t

bij

)aij−1

Estimated parameter values after maximising likelihood (left), compared to
true values (right). Details about the likelihood function are in the backup
slides.

â12 â13 â14 â23 â24

1.58 1.53 1.22 2.56 1.91

b̂12 b̂13 b̂14 b̂23 b̂24

3.06 2.55 1.58 1.15 5.19

a12 a13 a14 a23 a24

1.40 1.50 1.30 2.10 1.90

b12 b13 b14 b23 b24

2.68 2.13 2.30 1.10 5.00
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Comparison of parametric models with and without
covariate

Parameter estimates of model without covariates (left) and model with
covariates (right):

â12 â13 â14 â23 â24

1.58 1.53 1.22 2.56 1.91

b̂12 b̂13 b̂14 b̂23 b̂24

3.06 2.55 1.58 1.15 5.19

â12 â13 â14 â23 â24

1.55 1.51 1.24 2.56 1.91

b̂12 b̂13 b̂14 b̂23 b̂24

2.55 2.23 2.42 1.15 5.16

β̂12 β̂13 β̂14 β̂23 β̂24

-0.96 -0.60 0.97 -0.02 -0.06∣∣∣β̂ij ∣∣∣ ≈ 0 suggests insignificant effect on α̃ij(t|Z ) = α̃ij ,0(t) exp
(
β̃ijZ

)
.

Positive (negative) value of β̂ij suggests the risk increases (decreases)
when Z = 1.
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Comparison of parametric models with and without
covariate (cont’d)

Comparing the two models overall,

Without covariate With covariate

log likelihood -1741.66 -1662.43

No. of parameters 10 15
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Assessing goodness of fit graphically for transition
Diagnosis (1) to Relapse (2)
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Assessing goodness of fit graphically for transition
Diagnosis (1) to Death (3)
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Assessing goodness of fit graphically for transition
Diagnosis (1) to Dropout (4)
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Assessing goodness of fit graphically for transition Relapse
(2) to Death (3)
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Assessing goodness of fit graphically for transition Relapse
(2) to Dropout (4)
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Hypothesis test to determine if patients on treatment have
longer sojourn times before transitioning to undesirable
states
Patients benefit from a drug if they have longer sojourn times before
transitioning to undesirable states.

As per [Asanjarani et al., 2021], define the survival function of the holding
time in state i, Si (t) = P(τn > t|Jn−1 = i). Writing in terms of ITFs,

Survival function of holding time in state i

Si (t) = exp
(
−
∫ t

0

∑
k 6=i

α̃ik(u)du
)

For those chosen model, in state 1,

S1(t|Z ) = exp
(
−

4∑
k=2

( t

b1k

)a1k

exp(β1kZ )
)
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Hypothesis test to determine if patients on treatment have
longer sojourn times before transitioning to undesirable
states (cont’d)

Suppose we wish to test the hypothesis

H0 : S1(t0|Z = 1) = S1(t0|Z = 0) vs

H1 : S1(t0|Z = 1) < S1(t0|Z = 0)

for any fixed time point t0. It can be shown that:

S1(t0|Z = 1) = S1(t0|Z = 0) ⇐⇒
4∑

k=2

(
t0
b1k

)a1k
(

exp(β1k)− 1
)

= 0
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Hypothesis test to determine if patients on treatment have
longer sojourn times before transitioning to undesirable
states (cont’d)

Let g(θ) =
4∑

k=2

(
t0
b1k

)a1k
(

exp(β1k)− 1
)

. Here, θ is the vector of

parameters in the full model.

We appeal to the delta method [Van der Vaart, 2000] (see backup slides
for details). For chosen t0 e.g. median observed sojourn time in state 1,
the test statistic is

T =

(
4∑

k=2

( t

b̂1k

)â1k
(

exp(β̂1k)− 1
))/√

∇g(θ̂)> Î (θ̂)−1∇g(θ̂)

∼ N(0, 1) under H0

where ∇g(θ) denotes the vector of partial derivatives of g(θ). I (θ) is the
Fisher information matrix, estimated by the negative of the Hessian matrix
and evaluated at θ̂.
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Hypothesis test to determine if patients on treatment have
longer sojourn times before transitioning to undesirable
states (cont’d)

H0 : S1(t0|Z = 1) = S1(t0|Z = 0) vs

H1 : S1(t0|Z = 1) < S1(t0|Z = 0)

H0 is rejected if T is significantly greater than zero.

Based on the estimated parameters of the model, T = 5.13 and so H0 is
rejected in favour of H1 at any reasonable level of significance (p-value
1.43× 10−7).

Hence, there is overwhelmingly strong evidence that patients on active
treatment leave state 1 and transition to undesirable states significantly
faster than patients not on active treatment. The patient is not benefiting!
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Cox PH model vs fully parametric semi-Markov MSM

Fit Cox PH model on single transition (1) → (2):

hCrelapse(t|Z ) = hCrelapse,0(t)exp(βZ )

We get β̂ = −0.95 with 95% conf. int. (-1.33 , -0.58) (p-value
4.85× 10−7)
Estimated HR = 0.38 with 95% conf. int. (0.27 , 0.56)
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Cox PH model vs fully parametric semi-Markov MSM
(cont’d)

Fit parametric model on all transitions

α̃ij(t|Z ) =
aij
bij

(
t

bij

)aij−1

exp(β̃ijZ )

Comparing two groups’ (Z=0 and Z=1) holding time in state 1 using
estimated parameters:
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Cox PH model vs fully parametric semi-Markov MSM
(cont’d)

Ŝ1(t|Z ) = exp

(
−

4∑
k=2

(
t

b̂1k

)â1k

exp(β̂1kZ )

)

Joachim Grevel PAGE 2021 Tutorial, September 2021 33 / 41



Visualisation of potential patient benefit based on whether
patient is on active treatment
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Nelson-Aalen estimator (backup)

Nelson-Aalen estimator [Nelson, 1969]

Âij(t) =
∑
r :tr≤t

dijr
nijr

(5)

where dijr is number of i → j transitions at time tr , nijr is number at risk
of i → j transitions at time tr .
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Aalen-Johansen estimator (backup)

Aalen-Johansen estimator [Aalen and Johansen, 1978]

ˆCIF ij(t) =
∑
r :tr≤t

dijr
nijr

Ŝi (tr ) (6)

Ŝi (t) =
∏

q:tq≤t
(
1− dq

nq

)
is the Kaplan-Meier estimator

[Kaplan and Meier, 1958] for the survival function of the holding time at
state i . dq is number of transitions out of state i at time t and nq is
number at risk of any transition out of out state i at time t.
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Estimating semi-Markov MSM by optimising likelihood
(backup)
As per [Asanjarani et al., 2021], the likelihood each individual h can be
written as

L(h) =

{
N(h)∏
k=1

α̃
J

(h)
k−1J

(h)
k

(τk)S
J

(h)
k−1

(τk)

}{
S
J

(h)

N(h)

(U(h))

}1−δ(h)

=

{
N(h)∏
k=1

α̃
J

(h)
k−1J

(h)
k

(τk) exp
(
−
∫ τ

J
(h)
k

0
α̃
J

(h)
k−1

(u)du
)}
×

{
exp

(
−
∫ U(h)

0
α̃
J

(h)

N(h)

(u)du
)}1−δ(h)

where α̃i (t) =
∑
k 6=i

α̃ik(t).

Individuals are assumed independent so the full likelihood for m patients is

L =
m∏

h=1

L(h).
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Underlying assumptions about asymptotic distribution of
maximum likelihood estimator (backup)

It has been assumed the vector of maximum likelihood estimators θ̂ of
parameter vector θ is such that (θ̂ − θ) ∼ Np(0, I (θ)−1) asymptotically,
where I (θ) is the Fisher information matrix associated with the entire
sample. The reason for this assumption is that we have (conditionally)
independent and non-identically distributed data and so the usual desirable
asymptotic properties of maximum likelihood estimators may not apply.

Justifying or proving the distributional assumption (and hence the validity
of confidence intervals and hypothesis test as per the next two slides) is a
work in progress, but initial results based on simulations suggest evidence
of normality when the number of each transition is sufficiently large.
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Details about confidence intervals and hypothesis test for
difference in sojourn times before transitioning to
undesirable states (backup)

Assuming (θ̂ − θ) ∼ Np(0, I (θ)−1) asymptotically as detailed in the
previous slide, we can use the delta method to deduce that for a function
h(θ) with (non-zero) gradient vector ∇h(θ),
(h(θ̂)− h(θ)) ∼ N(0,∇h(θ)>I (θ)−1∇h(θ)) asymptotically.

Since the cumulative intensity transition functions and cumulative
incidence functions can be written as functions of θ, it is possible to
compute (asymptotic) confidence intervals at fixed time points.
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Details about confidence intervals and hypothesis test for
difference in sojourn times before transitioning to
undesirable states (cont’d) (backup)
The general form of the test statistic used for the hypothesis test
H0 : Si (t0|Z = 1) = Si (t0|Z = 0) vs H1 : Si (t0|Z = 1) < Si (t0|Z = 0) is

T =
g(θ̂)√

∇g(θ̂)> Î (θ̂)−1∇g(θ̂)
∼ N(0, 1) asymptotically under H0

where g(θ) =
t0∫
0

∑
k 6=i

α̃ik,0(u)
(

exp(βik)− 1
)

du. The Fisher information

matrix is estimated by the observed Fisher information matrix evaluated at
θ̂.

H0 is rejected if T is significantly greater than zero, unless the direction of
the inequality in the alternative hypothesis is reversed. In such a case, H0

is rejected if T is significantly less than zero.
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